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Abstract— Small mobile robots can be useful in dangerous
and high-risk applications such as disaster response. To this
end, small robots must be capable of autonomous navigation.
One way to perform autonomous navigation is via learning
perception-action cycles. The ability to learn perception-action
cycles may enable computationally– and data-efficient ways to
transfer navigation policies between robots, and to generalize
across operating environments. Learning perception-action cy-
cles currently relies on deep networks. Such networks, however,
may not be directly applicable to small robots due to the latter’s
constrained sensing and computing capacity. To mitigate this
challenge, we identify minimalistic neural network architectures
to approximate an obstacle prediction function using a robot’s
observation and action history. We propose a new learning-
based algorithm for small robot navigation in partially-known,
partially-observable environments. The performance of the
algorithm and its ability to generalize are evaluated in simple
and complex environments of varying size.

I. INTRODUCTION

Small (< 2 kg weight, < 30 cm largest body dimension)

robots enjoy several benefits when compared to their larger

counterparts. They have higher agility and maneuverability,

and are thus more capable and safer to operate in cluttered

environments, even around people. They can be comparably

fast and inexpensive to manufacture thus allowing deploy-

ment in large numbers. As such, small robots offer promise

in various dangerous and high-risk real-world applications

such as disaster response and search-and-rescue.

The efficacy of small robots in real-world applications

directly depends on their capacity to navigate autonomously.

If a map of the environment is known, then autonomous

navigation requires integration of planning, control, and esti-

mation. For instance, small unmanned aerial vehicles (UAVs)

can perform aerial acrobatics and bio-inspired maneuvers

like perching and grasping [1]–[5]. Small UAVs and ground

robots can assemble 3D structures [6]–[10], and small legged

robots can navigate in complex environments [11]–[13].

However, in many real-world applications we seldom have

a detailed map of the operating environment; only partial

information about the environment may be available. For

example, in the aftermath of a building fire, one can use

prior information from the building’s blueprints regarding

its dimensions and structural elements, but the internal

structure conditions are unknown (e.g., floors may have col-

lapsed). To navigate in such partially-known environments,
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the components of planning, control, and estimation must

be complemented with mapping. Simultaneous Localization

and Mapping (SLAM) algorithms enable a robot to con-

struct a map of its environment and localize itself within

the constructed map. SLAM is a mature field in robotics

applications [14]. Yet, most existing algorithms primarily

apply to larger robots which are typically equipped with

all the necessary sensing and computing hardware to gather

and process sufficiently information-rich data in real-time.

One exception is OrthoSLAM [15] which is a lightweight

SLAM algorithm that can run efficiently on computationally-

constrained robots. While OrthoSLAM is particularly suited

to indoor and structured environments, it may not perform

well in more general environments where the 2.5D and

obstacle orthogonality conditions are not met.

Contrary to their larger counterparts, small robots often

lack both the sensing and computing capacity to run SLAM

algorithms for autonomous navigation in partially-known en-

vironments. First, they have limited payload capacity to carry

for example a LIDAR sensor for mapping. Further, added

payload sharply reduces a small robot’s operational time.

This fact is particularly problematic in small UAVs [16].

A different autonomous navigation paradigm that may

circumvent the constrained sensing and computing capacity

of small robots hinges on designing navigation policies based

on perception-action cycles [17]. The robot first perceives its

environment to infer the local structure. This can be achieved

via lightweight, low power consumption sensors like cameras

or infrared (IR) distance sensors. Then the robot acts—i.e.

plans its motion—based on the locally-inferred environment,

and the cycle continues. The coupling of perception and

action, however, can be challenging since the robot needs

to keep track how its actions change its sensory input while

the same actions direct the acquisition of sensory data [17].

Allowing the robot to learn perception-action cycles instead

of hand-engineering desired responses may help address

this challenge. Further, learning-based navigation policies

may transfer well across different operating environments

with minimal modifications while allowing for some online

adaptation to improve the robot’s performance.

Learning perception-action cycles has been significantly

enhanced by recent progress in deep reinforcement learning

(RL). For example, A3C [18] and ICM [19] connect plan-

ning algorithms with deep networks, and achieve promising

performance with visual observations in games. However,

both A3C and ICM employ a complex architecture that

makes training and prediction time extremely long. Adapted

from DNC [20], MACN [21] follows a hierarchical global-



local process, and simplifies the network structure with an

external memory module. MACN takes laser data as input

and converts the local observation to a partial blueprint which

needs three convolution layers for feature extraction. Purely

RL methods have been used for navigation in unknown

environments (e.g., [22], [23]). However, they often require

a map for learning optimal policies, may not incorporate

obstacle avoidance, or, if so, utilize rewards (e.g., distance

to obstacles) that may cause chattering behaviors in complex

environments. Existing approaches to learn perception-action

cycles utilize very large networks. For applications with

small robots, shallow networks may instead be more useful

so that the forward pass evaluation and possible refinement

can run under constrained computing capacity. Shallow net-

works also allow us to recover some guarantees for learning-

based systems [24]–[26]. Such guarantees are very important

for meaningfully bringing learning into robotics applications.

We note here that employing shallow networks for small

robot navigation has been used in the past. Notably, evolving

neurocontrollers [27] can be combined with feed-forward

and recurrent neural networks to accomplish collision-free

corridor following by predicting sensory input [28]. How-

ever, these approaches are only tested in simple worlds with

a single isolated obstacle and appear to not generalize to

unseen environments. As we will show in the following, we

follow a systematic approach to identify simple yet useful

shallow network architectures, while our proposed approach

works and generalizes well to large, complex environments.

Contributions of this Paper

Motivated by the appealing properties and potential of

shallow networks, the contribution of this paper is twofold.

Identification of minimalistic neural network architec-

tures: We investigate various shallow network architectures

and evaluate their capacity to approximate a function for

obstacle prediction based on limited history of the robot’s

observations and actions. We draw similarities and differ-

ences between tested architectures and further test those that

perform on par with much more complex structures.

Development of a new learning-based navigation al-

gorithm for robots with constrained sensing and com-

puting capacity: We propose a navigation algorithm in

partially-known, partially-observable environments that com-

bines Temporal-Difference learning with Long-Short Term

Memory (LSTM) networks. We demonstrate the generaliza-

tion capability of the proposed algorithm by testing with

various map sizes not presented during training.

II. TECHNICAL PRELIMINARIES

A. Reinforcement Learning

Robot navigation in partially-known environments can

be cast as a reinforcement learning problem. Let qi =
[xi, yi]

T ∈ R
2 denote the robot state at step i; q0 and qf

denote the initial and final robot states, respectively. At each

step, the robot executes an action ai ∈ Ai, and receives a

reward from the environment. Reaching a desired final state

can be viewed as maximizing the total reward. The rewards

received after step i form a sequence Ri+1, Ri+2, . . . , Rf ,

where index f denotes the terminal state. The return from

state i can be expressed as the cumulative discounted reward

Gi =
f∑

k=1

γk−1Ri+k, where the discount rate γ lies in the

[0, 1] interval. The action-value function for a policy π is

the expected return Q(q, a) = E[Gi|qi = q, ai = a]. The

optimal policy thus is to select the sequence of actions that

maximize Q(q, a), that is

a∗ = argmax
a

Q(q, a) = argmax
a

E[Gi|qi = q, ai = a] .

However, the lack of a model for the environment challenges

the selection of future rewards and terminal state.

Our work builds upon Temporal-Difference (TD) Learn-

ing [29] to obtain estimates of Gi. We choose TD Learning

as the underlying basis due to its appropriateness in model-

free prediction problem. One-step TD updates its Gi esti-

mate using only the next observed reward Ri+1 (instead of

waiting until the end of the episode). The standard target

of one-step TD update is Gi =
∞∑

k=1

γk−1Ri+k = Ri+1 +

γ
∞∑

k=1

γk−1Ri+1+k = Ri+1 + γQ(qi+1, ai+1), when the

terminal state f is unknown. However, one-step TD methods

lack optimality guarantees since estimated rewards after step

i+ 1 may be inaccurate.

N-step TD methods would instead utilize n number of

rewards, 1 < n < f . The error reduction property guarantees

that the expectation of n-step reward is a better estimate

than one-step methods. In practice, however, the n-step

return cannot be used prior to observing Ri+n [29]. To

obtain Ri+n, n-step forward sampling of states, actions,

and rewards from actual or simulated interaction with an

environment is needed. Yet, large values of n may increase

the computational complexity to a level that makes real-time

execution on a small robot impossible.

In Section III, we propose a method to efficiently predict

up to Ri+2. The proposed method offers trade-offs between

the computational complexity associated with n > 1 and

estimation accuracy of Gi. The TD target can then be

expressed as Ri+1 + γRi+2 + γ2Q(qi+2, ai+2).

B. Environment Maps

In this work we consider environments that can be suffi-

ciently represented via a grid-based mapM⊂ R
2. Each cell

c of the map is square with unit length sides, and is uniquely

described by the coordinates (x, y) of each center point.

LetMobs andMfree denote the obstacle-occupied and free

subspaces of the map, respectively. We require i) Mobs to

contain no 2× 2 blocks (i.e. only “walls” are allowed), and

ii) Mfree to be path-connected (i.e. there is at least one

path between any two cells of the obstacle-free subspace).

Finally, we consider two types of maps: easy and difficult

ones (Fig. 1). A map is classified as difficult when there exist

several dead-ends and multiple intersections.







2) Policy Improvement: Selected a∗i may not be optimal

since the prediction function less than 100% accuracy, and

there is insufficient prior knowledge on unseen map areas.

Another candidate action may eventually yield a greater total

reward than the greedy action [29]. To encourage exploration,

the action chosen at each step is either a∗i with probability

(1− ε), or a random action with probability ε > 0.

3) Algorithm: We propose the robot navigation algo-

rithm 1. In each trial, initial and target states are arbitrary.

Nnavi is the maximum allowed steps for one navigation task.

Information used during the process includes the robot ob-

servation history of maximum length T , a list of inaccessible

state L of maximum length Lmax, and target state.

Algorithm 1 Navigation in partially observable Environment

1: Select q0, qf , T , Lmax, ε
2: initialize L = { }, W = { }, i← 1
3: get sensor report O(q0) at initial state

4: action space A0 ←
⋃

d∈D

{ad0|O(q0, d) = 1}

5: action a0 ← arandom ∈ A0 towards direction d0
6: next state qi ← (qi|q0, a0)
7: W ←W ∪ {O(q0), a0}
8: repeat

9: obtain sensor report O(qi)
10: Ai ←

⋃

d∈D

{adi |O(qi, d) = 1} ∩ {adi |(q
i+1|qi, a

d
i ) /∈ L}

11: if |Ai| = 1 then

12: L← L ∪ qi
13: a∗i ← ai ∈ Ai

14: else

15: for each aji ∈ Ai do

16: if i < T then

17: Rj(qi, a
j
i )← Rj

i+1
(qi, a

j
i )

18: else

19: compute Rj
i+2

(qi, a
j
i ) with f(W,aji ;wf )

20: Rj(qi, a
j
i )← Rj

i+1
(qi, a

j
i ) + γRj

i+2
(qi, a

j
i )

21: a∗i ← argmax
j

Rj(qi, a
j
i )

22: x← X ∼ U(0, 1)
23: if x ≤ ε then

24: ai ← a∗i
25: else

26: ai ← arandom ∈ Ai

27: qi+1 ← (qi+1|qi, ai)
28: W ←W ∪ {O(qi), ai}
29: i← i+ 1
30: until i = Nnavi − 1 OR qi = qf

IV. SIMULATION AND RESULTS

The proposed algorithm is tested in simulation. Our imple-

mentation is based on Keras with Tensorflow back-end. We

use NVIDIA TITAN X GPU and Intel Xeon CPU E5-2603.

Obstacles are placed randomly in maps of size h×w. Initial

and final states q0 and qf are picked randomly, with at least

one feasible path between them. We set Nrandom = 512 and

Nnavi = h ∗ w ∗ 2, and use the following hyper parameters

in training: batch size 128, optimizer RMSProp [41], initial

learning rate 0.001, decay rate 0, samples per epoch 500.

The number of epochs, representing one forward pass and

one backward pass of all the training examples, is variable.

A. Function Approximation

Algorithm 2 generates data for training, validation, and

testing. In each step i, we save O(qi) and ai as a vector vi.
The training input, output, and label are [vi−T+1 · · ·vi−1 ai],
Ôqi , and Oqi , respectively. The LSTM defines a distribution

P (d; qi, ai, wf ); we use binary cross-entropy between train-

ing data and model’s predictions for the cost function [32].

Algorithm 2 Data Generator for training Neural Network

1: Select h, w, generate random map, set q0, qf , Nrandom.

2: i← 1
3: get sensor report O(q0) at initial state

4: action space A0 ←
⋃

d∈D

{ad0|O(q0, d) = 1}

5: first action a0 ← arandom ∈ A0 towards direction d0
6: next state qi ← (qi|q0, a0)
7: repeat

8: obtain sensor report O(qi)
9: action space Ai ←

⋃

d∈D

{adi |O(qi, d) = 1}

10: if a
di−1

i ∈ Ai then

11: ai ← a
di−1

i

12: else

13: ai ← arandom ∈ Ai towards direction di
14: next state qi+1 ← (qi+1|qi, ai)
15: i← i+ 1
16: until i = Nrandom − 1 OR qi = qf

The testing accuracy of the FF network is listed in Table I.

Prediction accuracies for each direction are consistently

around 0.5 for all tested map sizes. The sliding window

length has no significant impact on the FF network. Since the

accuracy is low, we confirm that a shallow FF network does

not appear to be appropriate for this type of applications.

TABLE I: Testing Accuracy for FF network

Map Size T
Accuracy

East
Accuracy

South
Accuracy

West
Accuracy

North

ALL 20 0.501 0.502 0.501 0.501

We consider four LSTM networks: one 2-layer with 128
and 256 hidden neurons, and three 1-layer with 512, 256,

and 128 neurons, respectively. We present in Table II results

on training and validation accuracy from 51× 51 easy maps

trained over 125 epochs. All but the 1-layer LSTM with

128 neurons structures give over 90% testing accuracy. The

training time per epoch is around 40s for all 1-layer networks

irrespectively, and doubles for the 2-layer network.

TABLE II: LSTM testing accuracy on a 51× 51 easy map

Structure
Accuracy

East
Accuracy

South
Accuracy

West
Accuracy

North

time
per

epoch

2 layers 0.907 0.906 0.907 0.906 75s

1-512 layer 0.904 0.902 0.905 0.900 40s

1-256 layer 0.902 0.903 0.903 0.901 40s

1-128 layer 0.897 0.898 0.899 0.896 40s





TABLE VI: Not Fixed Map, 1-layer and 2-layer

1-layer 256 2-layer
Easy Difficult Easy Difficult

Index Tp[ms] success ≤ A∗ Tp[ms] success ≤ A∗ Tp[ms] success ≤ A∗ Tp[ms] success ≤ A∗

1 16.6 30/30 18/30 14.4 27/30 5/27 27.98 29/30 11/29 22.46 29/30 2/29
2 18.3 27/30 13/27 14.1 19/30 7/19 29.34 27/30 23/27 22.93 22/30 4/22
3 17.3 29/30 24/39 13.4 25/30 10/25 27.19 28/30 24/28 22.63 19/30 5/19
4 25.7 30/30 3/40 18.5 25/30 2/25 35.31 30/30 10/30 30.97 22/30 0/22
5 26.0 27/30 20/27 18.7 23/30 7/23 34.34 29/30 21/29 33.22 24/30 8/24
6 25.3 28/30 20/28 18.8 24/30 10/24 33.62 26/30 19/26 31.14 23/30 5/23
7 24.5 30/30 30/30 18.6 25/30 4/25 33.54 30/30 11/30 31.92 27/30 0/27
8 24.7 29/30 9/30 17.6 19/30 5/19 33.73 30/30 21/30 32.61 20/30 4/20
9 24.3 28/30 28/30 25.7 24/30 12/24 32.55 28/30 21/28 33.02 20/30 10/20

LSTM and 1-layer with 256 neurons are given in Table V.

Results show that our algorithm can generalize to unseen

maps of different size. Training with large simulated maps

can be very time consuming; our approach allows training

of the prediction function with small maps, and usage for

navigation in maps of unknown size.

Regardless of map size, the robot reaches the target

successfully over 90% in an easy map. Further, the algorithm

considers less nodes than A∗ on average over 50% of those

times that the robot reaches its target. In difficult maps, the

algorithm performs better if trained with larger maps. We

hypothesize that this behavior is observed for the following

reason. When trained with 11 × 11 maps, the prediction

function may learn that the maximum length of successive

obstacles is smaller than 11. When tested in a 51× 51 map,

the robot starts moving toward the target, but after observing

11 successive obstacles it may decide to turn back without

being able to ascertain if that path leads to a dead-end. The

learned model suggests that the path leads to a dead-end,

but it may not be true since the map is larger. The robot

then moves to the opposite direction, and does not reach the

target within the allocated steps. When trained with 51× 51
maps, the robot will keep moving forward after observing

11 successive obstacles. If it encounters a dead-end, it will

mark this path as inaccessible, and continue.

It is worth noticing that the length of the sliding window

can be smaller than the length of map size. If the map size

is not known, we can simply choose T = 30 based on our

results. Note that, by construction of the input, we cannot

get a prediction of Ri+2 before the process step reaches

the length of the sliding window. When the map size used

for simulation is relatively small compared to the length of

the sliding window, it is difficult for our algorithm to have

less steps compared to A∗ expand area. However, this fact

indicates that estimates of Ri+2 in fact help with navigation.

2) Real-Time Execution Capability: To provide detailed

results on prediction time, a new map is generated in each

trial. We run N = 30 simulation trials for the same nine

conditions with randomly selected q0 and qf .

Table VI shows the results with different maps in each

simulation trial. Time needed for prediction is given in

both difficult and easy environments. The prediction time

is averaged over total steps in 30 trials with different maps,

which can represent a generalized result. In both difficult and

easy cases, prediction time is related with sliding window

length T and number of layers in LSTM. When T increases,

it requires more time for prediction. For 2-layer LSTM with

T = 20 and T = 30, the average prediction time is around

20ms and 30ms, respectively, which makes it possible for

real-time execution. For 1-256 layer network, prediction time

can be reduced to as short as 14ms. Number of weight

parameters in the trained model for 2 layer LSTM network

is 0.55 M for T = 20 and 0.59 M for T = 30. For 1-256

network, it is 0.43 M when T = 20 and 0.51 M for T = 30.

V. CONCLUSIONS

The paper puts forward the idea that simple, shallow

networks may offer promise in small robot learning-based

navigation. Such networks can still apply despite the con-

strained computational and limited payload capacity of small

robots, and lend themselves to analysis for deriving certain

performance guarantees. Research on identifying minimalis-

tic network architectures that perform well in the context of

small robot navigation appears to be limited.

We narrow this gap by investigating five cases of shallow

networks, and by delving deeper on those architectures that

achieve high levels of accuracy via extensive simulations. We

show that a network with only one LSTM layer is able to

predict the existence of obstacles given a robot’s observation

history and a potential action. Our approach scales well as

the map size grows: A sliding window of length 30 can be

used in 51× 51 maps with over 90% prediction accuracy.

Furthermore, we propose an algorithm which embeds this

modest LSTM network to estimate a two-step forward reward

in a Temporal-Difference Reinforcement Learning context

for robot navigation. We show that in 2D grid worlds the al-

gorithm is capable of adapting to variable-size environments

not encountered during training, with randomly selected start

and target positions. A simulated robot equipped with a

simple four-directional IR sensing module can reach a target

with over 95% and 80% success rates in easy and difficult

maps, respectively. Combined with the short prediction times

of the algorithm, our approach offers promise for real-

time execution on small robots in hardware experiments.By

employing sensors with different sensing ranges, with the

same network architecture, our algorithm can be used to

determine n-step forward rewards, where 2 < n < f . Our

future work will compare the proposed method with the



lambda-return TD learning and Monte Carlo methods, and

validate it with physical experiments.
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